Neurosymbolic Association Rule Mining from Tabular Data Erkan Karabulut (e.karabulut@uva.nl), Paul Groth, Victoria Degeler University of Amsterdam ### Learning Rules? Knowledge discovery: Reveal associations between data features, e.g., columns of a given table. Interpretable inference: Draw conclusions using learned rules instead of black box models, such as classification rules. Formalization: Table with k features $F = \{f_1, ..., f_k\}$, each with categories $f_i^1,...,f_i^{c_i}$. Define the item universe $I=\left\{f_i^j\mid 1\leq i\leq k, 1\leq j\leq c_i ight\}$. Each row (transaction, n) $T \subset I$ satisfies $\forall i \in \{1,...,k\}, \exists ! j \in \{1,...,c_i\}, f_i^j \in T$ An association rule is $X \to Y$ with $X, Y \subset I, X \cap Y = \emptyset, |Y| = 1$. Logical form: $X \to Y \equiv (\neg \land_{x \in X} x) \lor y$ (Horn clause in CNF). #### Mushroom example: | cap-shape | cap-surface | odor | ••• | poisonous | |-----------|-------------|------|-----|-----------| | b | y | 1 | | e | | X | y | p | ••• | p | | b | S | 1 | | e | https://archive.ics.uci.edu/dataset/73/mushroom $cap-shape(b) \land cap-color(w) \rightarrow odor(l)$ cap-shape(b) \land cap-surface(y) \rightarrow poisonous(e) https://grocycle.com/parts-of-a-mushroom ## Research Question How to address Combinatorial Explosion in Rule Mining? Intuition: Even a small dataset can generate an overwhelming number of rules, most of which are redundant or trivial. Long execution times, harder to interpret. Existing methods are algorithmic, which rely on 'counting' co-occurrences. **Formal**: For itemset universe I, each disjoint $X, Y \subset I, Y \neq \emptyset$ defines a rule $X \to Y$, with $|X| + |Y| \le a$. Feasible itemsets: $$\prod_{i=1}^a (c_i+1)-1$$ Number of rules: $\sum_{p=1}^a c_i \Big(\prod_{i\neq p} (c_i+1)-1\Big)\Big)$ ### **Example:** Table: 20 (k) columns $(f_1, ..., f_{20})$, 4 (c_i) values each (q, r, t, y), and a = 4. \rightarrow 5,186,240 rules! Which rules to use? Hard to interpret, and unscalable on high-dimensional data. ### Aerial+: Addressing Rule Explosion **Intuition:** Autoencoders capture feature associations via reconstruction. If, after training, a forward pass with marked categories A reconstructs categories Cwith high probability, then $A \to C \setminus A$ (no self-implication). odor = {creosote, fishy, foul}, class = {edible, poisonous} τ_a = 0.5, τ_c = 0.8 Train to learn associations: shallow under-complete denoising Autoencoder Autoencoder Input: vectors of dim $\sum_{i=1}^k c_i$. Noise: $N \sim [-0.5, 0.5]$ added per feature category f_i^j , clipped to [0, 1]. Output: softmax per feature, values sum to 1 across categories. Loss: per-feature BCE, aggregated as $$BCE(F) = \Sigma_{i=1}^k \left(rac{1}{c_i} ight) \Sigma_{j=1}^{c_i} - (y_{i,j}\log(p_{i,j}) + (1-y_{i,j})\log(1-p_{i,j})),$$ with $p_{i,j} = \sigmaig(f_i^jig), y_{i,j} = ext{original (noise-free)}.$ #### Aerial+ is a Neurosymbolic approach: **Algorithm 1:** Aerial+'s rule extraction algorithm from a trained autoencoder **Input:** Trained autoencoder: AE, max antecedents: a, similarity thresholds τ_a, τ_c ### Validation ### Neurosymbolic rule learning is scalable ### Concise high-quality rule sets with full data coverage | Algorithm | #Rules | Time (s) | Cov. | Support | Conf. | Algorithm | #Rules | Time (s) | Cov. | ${\bf Support}$ | Conf. | |---|--------------|------------------|--|---------------|----------------------|--|---------------|---|------|-----------------|-------| | Congressional Voting Records | | | | Breast Cancer | | | | | | | | | BAT | 1913 | 208 | 1 | 0.06 | 0.45 | BAT | 787.1 | 162.18 | 1 | 0.07 | 0.41 | | GW | 2542 | 186 | 1 | 0.05 | 0.48 | GW | 1584 | 129.18 | 1 | 0.08 | 0.42 | | SC | 7 | 186 | 0.46 | 0.01 | 0.43 | SC | 33.6 | 137.66 | 1 | 0.03 | 0.27 | | FSS | 10087 | 272 | 1 | 0.01 | 0.71 | FSS | 6451.6 | 225.71 | 1 | 0.02 | 0.36 | | $\operatorname{FP-G}\mid\operatorname{HMine}$ | 1764 | $0.09 \mid 0.04$ | 1 | 0.29 | 0.88 | FP-G HMine | 94 | $0.01 \mid 0.01$ | 1 | 0.34 | 0.87 | | ARM-AE | 347 | 0.21 | 0.03 | 0.23 | 0.45 | ARM-AE | 131 | 0.09 | 0.01 | 0.19 | 0.27 | | Aerial+ | 149 | 0.25 | 1 | 0.32 | 0.95 | Aerial+ | 50 | 0.19 | 1 | 0.39 | 0.86 | | | \mathbf{N} | Iushroom | | | | | | Chess | | | | | BAT | 1377.2 | 225.57 | 1 | 0.1 | 0.62 | BAT | 2905.9 | 235.34 | 1 | 0.17 | 0.64 | | GW | 1924.1 | 184.56 | 1 | 0.11 | 0.63 | GW | 5605.25 | 255.56 | 1 | 0.31 | 0.65 | | SC | 1.33 | 281.84 | 0.07 | 0.02 | 0.48 | SC | 1 | 545.71 | 0 | 0 | 0.7 | | FSS | 794.9 | 352.99 | 1 | 0.04 | 0.38 | FSS | 32.75 | 380.73 | 0.4 | 0 | 0.36 | | FP-G HMine | 1180 | $0.1 \mid 0.07$ | 1 | 0.43 | 0.95 | FP-G HMine | 30087 | $12.43 \mid 0.7$ | 1 | 0.46 | 0.93 | | ARM-AE | 390 | 0.33 | 0 | 0.22 | 0.23 | ARM-AE | 22052 | 26.98 | 0.02 | 0.39 | 0.54 | | Aerial+ | 321 | 0.38 | 1 | 0.44 | 0.96 | Aerial+ | 16522 | 0.22 | 1 | 0.45 | 0.95 | | | S | pambase | | | | | | | | | | | BAT | 0 | 424 | No | o rules for | und | | | | | | | | GW | 0 | 508 | No rules found Metrics: | | | | | | | | | | SC | 0 | 643 | $egin{array}{ll} ext{No rules found} & ext{Supp}(X ightarrow Y) \ = \left \left\{ T: X \cup Y \subseteq T ight\} \right / n \end{array}$ | | | | | | | | | | FSS | 0 | 677 | $\operatorname{No} ext{ rules found } \operatorname{Conf.}(X o Y) = \{T: X \cup T \subseteq T\} / \{T: X \subseteq T\} $ | | | | | | } | | | | $\operatorname{FP-G}\mid\operatorname{HMine}$ | 125223 | $21.4 \mid 2.14$ | 1 | 0.64 | 0.92 | $\operatorname{Cov.}(X o T) = \{T: X \subseteq T\} o \{T: X \subseteq T\} $ | | | | | | | ARM-AE | 85327 | 254 | 0.03 | 0.31 | 0.38 | | — [• · · · | $\mathbf{r} \subseteq \mathbf{r} \mid \mathbf{r} \mid \mathbf{r}$ | | | | | | | | | | | | | | | | | #### Concise rule sets improves downstream task performance 43996 1.92 | Dataset | ${\bf Algorithm}$ | # Rules or Items | Accuracy | Exec. Time (s) | | |------------------------------|----------------------|--|--|---|--| | | | Exhaustive Aerial+ | Exhaustive Aerial+ | Exhaustive Aerial+ | | | Congressional Voting Records | CBA
BRL
CORELS | 3437 1495
2547 57
4553 61 | $91.91 \mid 92.66$ $96.97 \mid 96.97$ $96.97 \mid 96.97$ | $0.34 \mid 0.14$ $15.37 \mid 9.69$ $3.04 \mid 0.17$ | | | Mushroom | CBA
BRL
CORELS | 27800 2785
5093 493
23271 335 | 99.82 99.82
99.87 99.82
90.14 99.04 | $1.75 \mid \textbf{1.30}$ $244 \mid \textbf{167}$ $61 \mid \textbf{2}$ | | | Breast
Cancer | CBA
BRL
CORELS | 695 601
2047 290
2047 369 | 66.42 71.13
71.13 71.46
73.69 75.82 | $egin{array}{c c c} {f 0.08} & 0.28 \\ 16.82 & {f 14.5} \\ 1.42 & {f 0.40} \end{array}$ | | | Chess | CBA
BRL
CORELS | 49775 34490
19312 1518
37104 837 | 94.02 93.86
96.21 95.93
81.1 93.71 | 24.31 6.24
321 119
106 3.87 | | | Spambase | CBA
BRL
CORELS | 125223 33418
37626 5190
275003 1409 | 84.5 85.42
72.78 84.93
85.37 87.28 | 23.87 7.56
1169 431
1258 5.23 | | Library