Discovering Association Rules in High-Dimensional Small Tabular Data

Erkan Karabulut¹ ≥ (e.karabulut@uva.nl), Daniel Daza², Paul Groth¹, Victoria Degeler¹ ¹University of Amsterdam, ²Amsterdam University Medical Center

Learning Rules?

Knowledge discovery: Reveal associations between data features, e.g., columns of a given table (ARM).

Interpretable inference: Draw conclusions using learned rules instead of black box models, such as classification rules.

Formalization: Table with k features $F = \{f_1, ..., f_k\}$, each with classes $f_i^1, ..., f_i^{c_i}$. Define the item universe $I = \left\{ f_i^j \mid 1 \leq i \leq k, 1 \leq j \leq c_i \right\}$.

Each row (transaction) $T\subset I$ satisfies $\forall i\in\{1,...,k\}, \exists !j\in\{1,...,c_i\}, f_i^j\in T$ An association rule is $X \to Y$ with $X, Y \subset I, X \cap Y = \emptyset, |Y| = 1$. Logical form: $X \to Y \equiv (\neg \land_{x \in X} x) \lor y$ (Horn clause in CNF).

Gene expression datasets:

gene1	gene2	gene3	•••	gene18107					
normal	normal	normal		normal					
normal	normal	high	•••	high					
normal	normal	normal		low					
Gao et al. 2015.									

 $\textit{Gene2(high)} \land \textit{Gene29(high)} \rightarrow \textit{Gene14(low)} \qquad X \rightarrow Y, \;\; |X| + |Y| \leq a$

Example: 20 features, 4 values each, $a = 4 \Rightarrow 5, 186, 240 \text{ rules!}$

Rule Explosion:

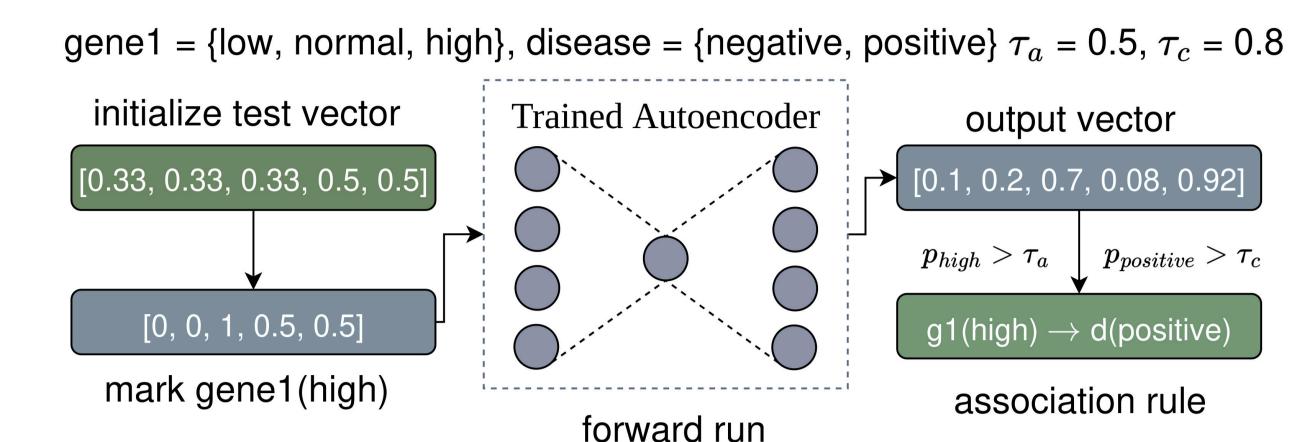
Even small datasets can generate millions of redundant or trivial rules --- slow, hard to interpret, and unscalable.

$$X o Y, \;\; |X| + |Y| \le a$$

$$\# ext{ Rules} = \sum_{p=1}^a c_p! \Biggl(\prod_{i
eq p} (c_i+1) - 1 \Biggr)$$

Neurosymbolic ARM

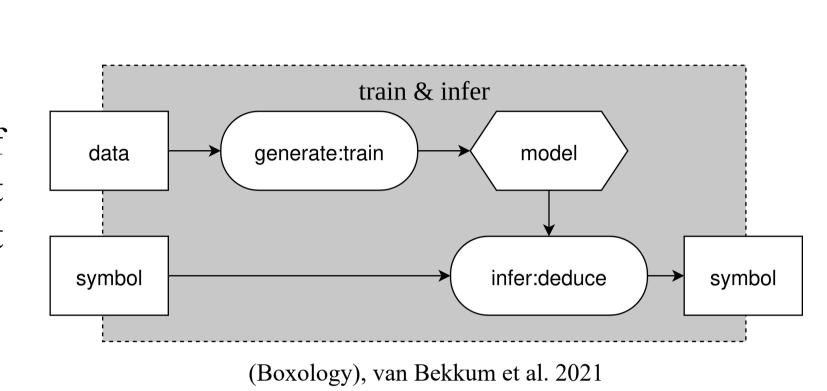
Intuition: Autoencoders capture feature associations via reconstruction. If, after training, a forward pass with marked categories A reconstructs categories C with high probability, then $A \to C \backslash A$ (no self-implication).



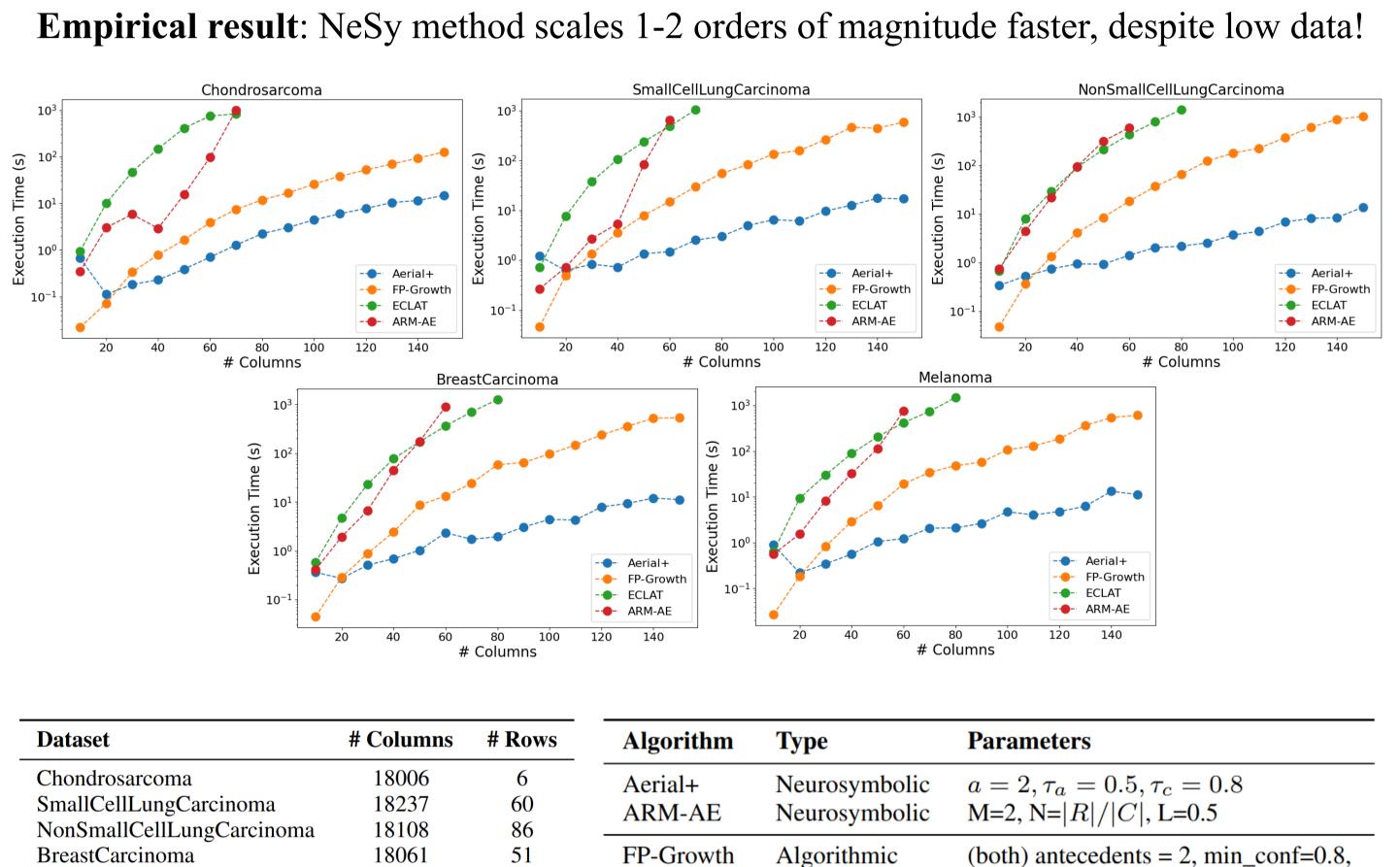
(Aerial+), Karabulut et al. 2025

Observation:

The reconstruction objective of Aerial+ prioritizes significant patterns rather than redundant patterns!



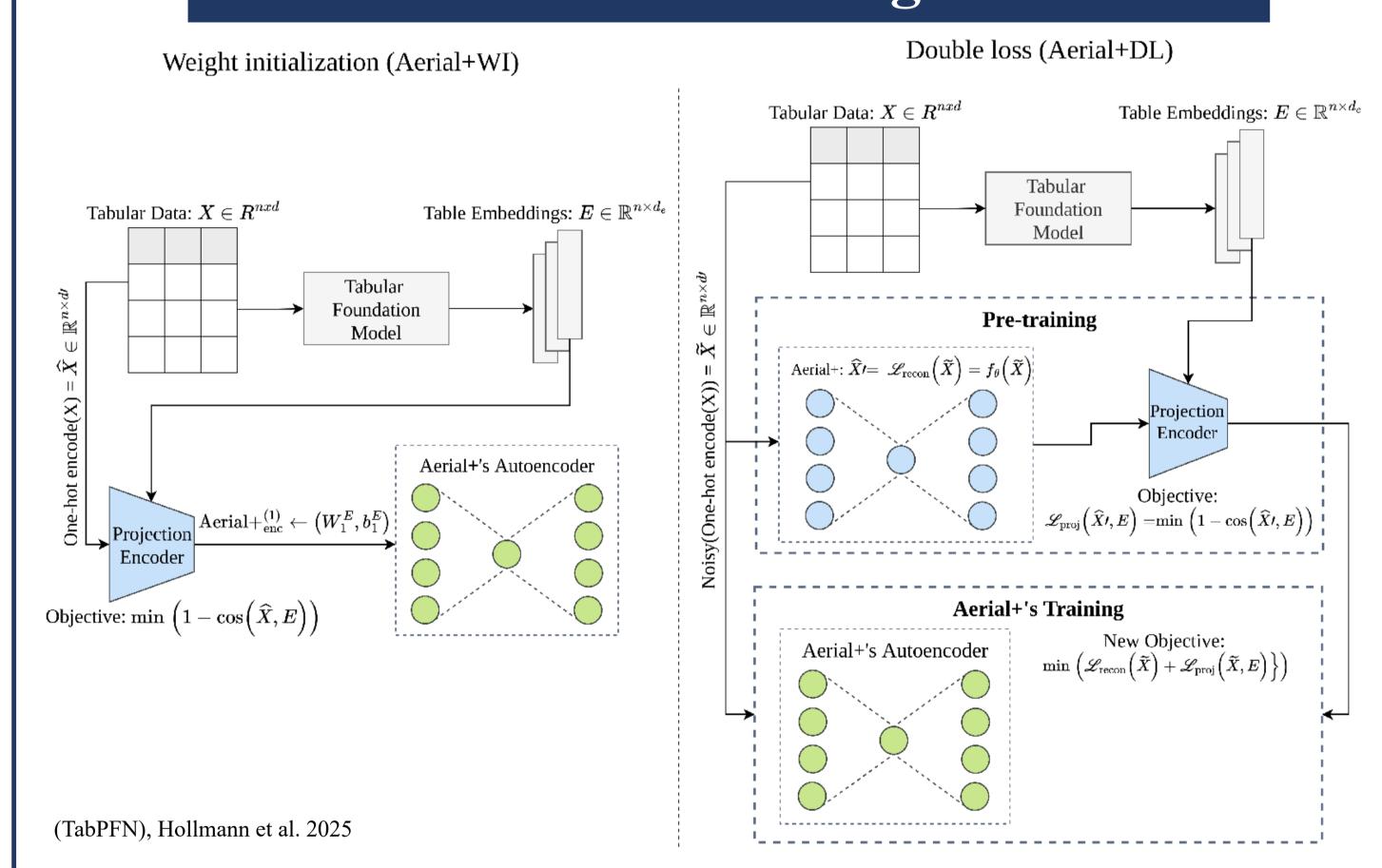
Empirical Analysis Neurosymbolic ARM is Scalable!



ECLAT

Algorithmic

How to Boost Knowledge Discovery in a Low-Data Regime?



Weight initialization from tabular foundation models (Aerial+WI) and semantic alignment of table embeddings with code layers using a dual loss function (Aerial+-DL)

Melanoma

Validation, Interpration and Future Research

Empirical result: A concise set of higher-quality association rules!

17902

Approach	# Rules	~Rule Coverage	~Support	~Confidence	Data Coverage	~Zhang's Metric	Exec. Time (s)			
Chondrosarcoma										
Aerial+	200	0.23	0.21	0.921	0.533	0.784	2.25			
Aerial+WI	75	0.217	0.206	0.945	0.524	0.813	5.80			
Aerial+DL	75	0.235	0.219	0.947	0.536	0.828	5.36			
SmallCellLungCarcinoma										
Aerial+	1576	0.068	0.041	0.579	0.835	0.476	10.58			
Aerial+WI	664	0.076	0.052	0.633	0.715	0.577	13.48			
Aerial+DL	1338	0.070	0.044	0.597	0.816	0.513	18.23			
	NonSmallCellLungCarcinoma									
Aerial+	1620	0.059	0.035	0.584	0.823	0.554	18.03			
Aerial+WI	978	0.078	0.057	0.663	0.698	0.639	28.67			
Aerial+DL	1453	0.053	0.028	0.547	0.849	0.501	24.27			
BreastCarcinoma										
Aerial+	1017	0.072	0.046	0.641	0.816	0.575	9.64			
Aerial+WI	590	0.077	0.052	0.686	0.686	0.644	12.09			
Aerial+DL	535	0.078	0.050	0.652	0.761	0.590	15.31			
Melanoma										
Aerial+	1220	0.067	0.035	0.545	0.888	0.440	13.09			
Aerial+WI	773	0.070	0.038	0.575	0.772	0.496	13.19			
Aerial+DL	859	0.071	0.038	0.566	0.860	0.461	16.49			

Metrics: $\mathrm{Support}(X o Y) \ = \left| \left\{ T : X \cup Y \subseteq T \right\} \right| \ / \ n$ $\operatorname{Confidence}(X o Y) \ = |\{T: X \cup Y \subseteq T\}| \, / \, |\{T: X \subseteq T\}|$ $\operatorname{Coverage}(X o Y) \ = |\{T: X \subseteq T\}| \ / \ n$

 $\operatorname{Zhang}(X o Y) = rac{\operatorname{conf}(X o Y) - \operatorname{conf}(X' o Y)}{\max\left(\operatorname{conf}(X o Y),\operatorname{conf}(X' o Y)
ight)}$

- Dataset dependency: Algorithmic methods' execution time increases with data density (many high-support itemsets), while Aerial+ maintains constant polynomial-time extraction regardless of density.
- Validation scope: Testing on more diverse domains and datasets with higher instance-tofeature ratios (n \gg d) needed to assess convergence and rule quality
- Foundation model constraint: Current approach limited to TabPFN (only available model with table embedding interface); tabular foundation designed classification/regression rather than column associations
- Background knowledge in knowledge discovery: What other types of knowledge, e.g., structured or bayesian, can be utilized in knowledge discovery?

Code

Paper

 $min_support=0.5 * \mathbb{E}[support(R)]$